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ABSTRACT

Cetoleic acid (22:1n-11) is a good indicator of diet in marine
predators and has proven to be an important fatty acid (FA)
when using adipose tissue FA composition to study diet in
marine mammals and seabirds. Feeding studies have shown
that 22:1 isomers are predictably underrepresented in adipose
tissue relative to diet, implying that metabolism within the
predator strongly influences the relationship between the level
of these FAs in diet and adipose tissue. Fully understanding
such metabolic processes for individual FAs is important for
the quantitative estimation of predator diets. We employed a
dual-label radioisotope tracer technique to investigate the po-
tential modification of 22:1n-11 and its recovery in the blubber
of gray seals (Halichoerus grypus) and in the adipose tissue and
liver of mink (Mustela vison), a smaller model carnivore also
accustomed to fish-based diets. In both seals and mink, 3H
radioactivity was found in the chain-shortened products of 22:
1n-11, with 18:1 being the dominant product. We also found
3H radioactivity in saturated FAs. The distribution patterns of
3H radioactivity across the FAs isolated from seal blubber and
mink subcutaneous adipose tissue were comparable, indicating
that mink are a good model for the investigation of lipid me-
tabolism in marine carnivores.
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Introduction

Cetoleic acid (22:1n-11) has proved to be an important fatty
acid (FA) when using adipose tissue FA composition to study
diet in marine mammals and seabirds (Iverson 1993; Käkelä et
al. 1993; Smith et al. 1996; Iverson et al. 1997a, 1997b; Raclot
et al. 1998; Brown et al. 1999; Dahl et al. 2000; Iverson and
Springer 2002). Although theoretically vertebrates can synthe-
size 22:1n-11, this FA primarily originates from the fatty al-
cohols (wax esters) of certain copepod species (Lee et al. 1971;
Pascal and Ackman 1976; Ackman et al. 1980; Falk-Petersen et
al. 1990). The concentration of this FA also varies widely among
different fish and invertebrate species (Ackman 1980; Iverson
1993; Dahl et al. 2000; Budge et al. 2002; Iverson et al. 2002),
making 22:1n-11 a good indicator of diet when found in the
predator. Feeding studies have shown, however, that the isomers
of 22:1 (n-11, n-9, and n-7) are generally underrepresented in
adipose tissue relative to the diet (Holland et al. 1990; Lin and
Connor 1990; Lin et al. 1993; Kirsch et al. 1998, 2000; Cooper
et al. 2001; Iverson et al. 2004). Nevertheless, this underrepre-
sentation is both predictable and highly consistent among both
pinnipeds and seabirds (Iverson et al. 2004). This implies that
metabolism within the predator has a strong and predictable
influence on the relationship between the levels of these FAs
in the diet and the adipose tissue. A better understanding of
this metabolism will allow more accurate use of 22:1n-11 in
quantitatively estimating diets of marine predators using quan-
titative FA signature analysis (Iverson et al. 2004).

In this study, we investigated the modification and deposition
of 22:1n-11 using radiolabeled FA to provide more direct insight
into the relationship between ingestion and deposition of 22:
1 FAs in predators and to better understand the origin and
fates of potential modification products. Radioisotope tracers
are commonly used to study the in vivo metabolism of indi-
vidual FAs (Owen et al. 1975; Thomassen et al. 1985; Hjelte et
al. 1990; Linares and Henderson 1991; Green and Yavin 1993;
Rabinowitz and Myerson 1994; Nilsson et al. 1996). Pinnipeds
present a significant problem in tracking ingested labeled FA.
They have a large body size, and blubber constitutes a high
percentage of body mass (approximately 10%–45%; Worthy
and Lavigne 1987; Ryg et al. 1990; Iverson et al. 1995; Arnould
et al. 1996; Aarseth et al. 1999; Kirsch et al. 2000), both of
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which result in a large dilution of the labeled FA. Thus, the
cost of feeding sufficient amounts of such labeled compounds
can be quite high. One way to circumvent this logistical prob-
lem is to use a much smaller model animal. A second approach,
developed by Budge et al. (2004), is to employ a more sensitive
method of analysis that is capable of identifying labeled FA in
the blubber of pinnipeds when small doses (!1 mCi) of labeled
lipid are ingested. In this study, we employed both approaches
to determine the metabolic fate of dietary 3H-labeled 22:1n-11
in pinnipeds. Mink (Mustela vison) were used as a model for
marine mammals because they too are carnivores accustomed
to fish-based diets (Linscombe et al. 1982; Tolonen 1982), but
their much smaller size avoids the problem of extreme signal
dilution.

In addition to tracing 3H-labeled 22:1n-11, simultaneously
administering a differently labeled control FA allows for com-
parison between the levels of deposition of the two FAs, giving
a quantitative measure of relative recovery. We chose 14C-labeled
18:1n-9 as a control FA because it was expected to experience
little modification between ingestion and final deposition in
adipose tissue (Cook 1991; Budge et al. 2004), and its metab-
olism is generally representative of the dietary FA pool as a
whole (Hagenfeldt et al. 1972; Jones et al. 1985; Wang and Koo
1993). Thus, this measure of relative recovery will indicate the
degree to which the underrepresentation of 22:1n-11 in the
adipose tissue relative to the diet is a direct consequence of its
metabolism.

Material and Methods

Isotopically Labeled Fatty Acids

Because 3H-labeled 22:1n-11 is not commercially available, it
was necessary to first isolate 22:1n-11 from a natural source
and then label it. We isolated 22:1 from surplus FA methyl ester
(FAME) samples from marine lipids using a combination of
argentation thin-layer chromatography and reverse-phase high-
performance liquid chromatography (HPLC), according to the
methods detailed in Budge et al. (2004). A sample of 50 mg
was isolated to ensure an appropriate yield of labeled product.
The isolated 22:1n-11 was sent to Perkin Elmer Laboratories
for tritium labeling. The [1-14C]-oleic acid (18:1n-9) was pur-
chased from DuPont NEN (Boston). All radioisotopes were
purchased under a license and permit held by Sara Iverson at
Dalhousie University. The use of radioisotopes at the Nova
Scotia Agricultural College (NSAC) Canadian Centre for Fur
Animal Research was approved under an NSAC radioisotope
use permit.

Mink Experiment

Five adult male mink housed at the NSAC Canadian Centre
for Fur Animal Research were maintained on a herring-based
diet from the time of weaning up to the time of the experiment.

Thus, all the animals were accustomed to consuming marine
lipids, including 22:1n-11. All animals were housed in identical
conditions and led relatively sedentary lives. For the experi-
ment, the mink were fed 1 mCi 3H-labeled 22:1n-11 as FAME
and 0.01 mCi 14C-labeled 18:1n-9 as free FA using an eye-
dropper in combination with a 100-g meal of fish. After a 6-
or 9-h incubation period, the mink were anesthetized by in-
tramuscular injection of ketamine hydrochloride at 25 mg kg�1

body weight. The animals were then euthanized by intracardiac
injection of sodium pentobarbital at 0.44 mL kg�1 body weight.
Tissue samples weighing approximately 1 g were taken from
the liver and from the mesenteric, omental, perirenal, inguinal,
and subcutaneous adipose depots. For simplicity of presenta-
tion, the data for the inguinal, omental, and perirenal adipose
depots were averaged to form the visceral category. Samples
were placed in glass vials (with Teflon-lined caps) with chlo-
roform and 0.01% BHT and then frozen until further lipid
analysis was possible. Experiments using mink were approved
by the NSAC Animal Care and Use Committee.

Seal Experiment

Two free-ranging juvenile gray seals were captured on Sable
Island, Nova Scotia, placed in a fenced enclosure on the beach,
and fasted for approximately 12 h. Each animal was then fed
1.5 mCi 3H-labeled 22:1n-11 as FAME and 0.1 mCi 14C-labeled
18:1n-9 as free FA by gastric intubation. Budge et al. (2004)
found that administering 0.5 mCi of labeled FA was sufficient
to produce a detectable signal in the blubber. However, because
22:1n-11 typically experiences reduced deposition relative to
other FAs, we chose to use three times as much radioactivity
in this experiment. On the other hand, 18:1n-9 is expected to
experience a relatively direct deposition, so only 0.1 mCi of
14C-labeled 18:1n-9 was used. A 24-h incubation period was
chosen in light of the very low level of absolute deposition
(!2%) of ingested 3H-labeled triolein found by Budge et al.
(2004), using a 12-h incubation period. Blubber biopsies to-
taling approximately 0.5 g per animal were taken from both
the right and left flanks of each animal according to Kirsch et
al. (2000). The animals were then released. Samples were placed
in glass vials (with Teflon-lined caps) with chloroform and
0.01% BHT and frozen until further lipid analysis was possible.
Experiments using seals were approved by the Dalhousie Uni-
versity Committee on Laboratory Animals.

Lipid Analysis

Lipids were extracted from adipose and blubber samples using
2 : 1 chloroform : methanol according to a modified Folch et
al. (1957) procedure described in detail in Iverson et al. (2001).
FAMEs were formed by reaction of approximately 100 mg of
lipid with 1.5 mL of fresh anhydrous boron trifluoride in meth-
anol (8% v/v) and 1.5 mL of hexane. The mixture was heated
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Figure 1. Relative recovery ([3H-labeled 22:1recovery/
14C-labeled 18:1recovery]/[3H-labeled 22:1ingested/

14C-labeled 18:1ingested]) of labeled fatty acids in
liver and adipose tissue (AT) depots of adult male mink fed 1 mCi 3H-labeled 22:1n-11 and 0.01 mCi 14C-labeled 18:1n-9 after a 6- or 9-h
incubation period.

at 100�C for 1 h in a nitrogen atmosphere and FAMEs were
extracted with hexane. FAMEs were then separated by degree
of unsaturation using argentation thin-layer chromatography
according to Budge et al. (2004). The FAMEs of each fraction
were subjected to reverse-phase HPLC, and individual FAMEs
were manually collected in glass test tubes. The purity of each
isolate was assessed using temperature-programmed gas liquid
chromatography according to Iverson et al. (1997b) on a Perkin
Elmer Autosystem II Capillary FID GC equipped with a flexible
fused silica column ( mm i.d.) coated with 50%30 m # 0.25
cyanopropyl polysiloxane (0.25-mm film thickness; J & W/Agi-
lent DB-23, Folsom, CA) and linked to a computerized inte-
gration system (Turbochrom, ver. 4.1, Perkin Elmer Nelson).
FAMEs were identified by comparison of retention times with
known standards (Nu-Check Prep, Elysian, MN), as well as by
gas chromatography mass spectrometry. Each FAME fraction
was then mixed with a scintillation cocktail (ScintiVerse II) and
counted in a Beckman scintillation counter (LS3801).

Results

The relative recovery of 22:1n-11 was calculated as the ratio of
3H-labeled 22:1n-11 to 14C-labeled 18:1n-9 recovered in a depot
divided by the ratio of 3H-labeled 22:1n-11 to 14C-labeled 18:
1n-9 ingested. In the mink that had a 6-h incubation period,
there was a large degree of individual variation in the relative
recovery of 22:1n-11 (Fig. 1). In general, mink 1 had the greatest
relative recovery, with its highest value being 0.60 in the mes-
enteric adipose tissue, while mink 3 had the lowest relative
recoveries, !0.11 in all tissues. In the mink with a 9-h incu-
bation period, the relative recovery was similar for both animals
and was similar across all tissues sampled. In all tissues, the
relative recovery of 22:1n-11 was less at 9 h than it was after
a 6-h incubation period. In seals 1 and 2, the relative recovery
of 22:1n-11 in blubber was 0.67 and 0.84, respectively.

The concentrations of 3H radioactivity present in the various
FAs isolated from the different mink tissues indicate consid-
erable individual variation in the incorporation of the 3H label
(Table 1). This variation could have been caused by differences
in mink body size and composition, both of which would affect
the dilution space of the label. Body mass of the mink showed
little variation ( kg), but body composition was not2.3 � 0.1
measured in this study. In a different study, however, body
composition was measured in adult male mink and found to
show relatively little variation (total body fat: ;28.7% � 3.2%
total body protein: ; Boudreau 2005). For this21.3% � 1.1%
reason, it is unlikely that variations in body mass or body
composition contributed greatly to the large variation seen in
the incorporation of the 3H label. Generally speaking, the con-
centration of 3H radioactivity in the mink incubated for 6 h
was greater than that in mink incubated for 9 h. At both 6 h
and 9 h, the concentration of 3H-labeled 22:1 was greater in
the liver than in any of the adipose depots (linear mixed-effects
model, ).P ! 0.044

To account for the large amount of individual variation in
the absolute concentrations of radioactivity and to make the
data comparable across individuals, the radioactivity in each
FA was expressed as a percent of the total 3H present in a
specific tissue. The distribution pattern of 3H radioactivity
among the various FAs provided insight into the extent of FA
chain shortening and recycling (Figs. 2, 3). Even after the ra-
dioactivity data were standardized, individual differences in the
metabolic processing of the ingested 3H-labeled 22:1n-11 were
apparent in some depots after a 6-h incubation period. For
example, in mesenteric adipose, mink 3 contained the majority
of its radioactivity in 18:1 (63.7%) with relatively little re-
maining in 22:1 (10.3%), whereas mink 2 had a relatively large
amount of its radioactivity remaining in 22:1 (38.1%), with a
smaller amount found in 18:1 (18.6%; Fig. 2).
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Table 1: 3H radioactivity recovered in fatty acids isolated from various tissue samples of
mink (M1–M5)

Mesenteric AT Liver

6 h 9 h 6 h 9 h

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

14:0 1.0 1.7 13.2 .3 .1 20.4 363.0 318.3 34.8 15.1
16:0 4.9 5.7 20.8 2.1 .2 51.6 452.2 422.4 590.6 113.7
18:0 2.9 6.2 19.1 1.8 .2 59.8 517.4 643.0 618.3 102.8
16:1 2.6 1.5 3.0 1.0 .1 13.3 224.7 54.2 29.2 9.8
18:1 5.7 7.1 146.5 6.2 .5 11.0 121.2 119.4 95.4 41.7
20:1 1.0 1.5 3.7 .7 .1 5.3 44.8 59.7 34.6 10.5
22:1 5.9 14.5 23.7 1.2 .1 17.3 70.9 109.3 26.4 17.4

Total 24.1 38.1 230.1 13.5 1.4 178.6 1,794.3 1,726.2 1,429.3 311.1

Visceral AT Subcutaneous AT

6 h 9 h 6 h 9 h

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

14:0 6.7 1.5 4.3 .2 .1 .9 .9 5.7 .1 .0
16:0 7.2 11.7 12.0 .9 .2 3.6 6.5 8.6 .7 .1
18:0 11.5 11.9 10.1 .8 .4 2.2 10.9 13.3 .5 .2
16:1 2.6 3.3 6.4 .8 .1 .6 1.5 12.7 .7 .1
18:1 5.7 6.2 11.9 3.4 .4 1.4 5.4 35.8 2.3 .2
20:1 2.9 2.0 4.1 .3 .1 .8 .9 4.6 .2 .1
22:1 1.4 2.0 1.8 .3 .1 .9 2.0 2.2 .3 .1

Total 38.1 38.5 50.6 6.7 1.3 10.3 27.9 82.7 4.7 .9

Note. tissue. Values are .�1AT p adipose 1,000 # dpm g lipid

The distribution pattern of radioactivity among the FAs in
the liver was quite different from that of the adipose depots in
that the vast majority of the 3H recovered was located in the
saturated FAs (SFAs; average of 76.1%, Fig. 2). The liver tissue
sampled after a 9-h incubation period maintained this distri-
bution pattern distinct from the adipose depots, with an average
of 80.7% of radioactivity in the SFAs. The distribution of ra-
dioactivity among the FAs in the visceral and subcutaneous
adipose depots of the 6-h minks showed somewhat different
patterns from those of the mesenteric adipose tissue of the
same animals (Fig. 2). In both the visceral and subcutaneous
adipose depots, little of the radioactivity in any of the mink
was remaining in 22:1 (!7%). Somewhat less radioactivity is
found in the monounsaturated FAs (MUFAs) of the visceral
(34.4%) and subcutaneous (39.5%) depots compared with the
mesenteric depot (44.0%), whereas much more of it was found
in the SFAs (average of 61.4%, 54.3%, and 31.7%, respectively).
At 9 h, the distribution patterns of radioactivity in all adipose
depots were similar, with SFAs accounting for an average of
35.2%, 39.6%, and 30.7%, and MUFAs accounting for an av-
erage of 56.1%, 54.5%, and 58.4% for the mesenteric, visceral,
and subcutaneous depots, respectively (Fig. 3).

Comparison of these data from 6- and 9-h incubated animals

revealed interesting findings (Figs. 2, 3). The distribution pat-
tern of radioactivity in the FA of the liver was virtually identical
in the 6- and 9-h mink. Also, in both the visceral and sub-
cutaneous adipose tissue, the proportion of 3H radioactivity in
18:1 was greater in the 9-h mink (average of 38.8% and 37.3%,
respectively) than in the 6-h mink (average of 18.2% and 25.3%,
respectively). This was coupled with a general reduction in the
amount of 3H radioactivity found in the SFAs at 9 h relative
to 6 h for both the visceral (average of 39.6% vs. 61.4%) and
subcutaneous depots (average of 30.7% vs. 54.3%).

In seals, significant amounts of 3H were found in each of
the SFAs and MUFAs isolated from blubber samples (Table 2).
Tritium recovery, on a per gram blubber basis, was comparable
in the two seals, with seal 1, the smaller of the two (42.0 vs.
50.5 kg), showing a 1.4-fold greater concentration. However,
body composition measurements were not taken from these
animals, so the absolute dilution of the ingested radioactivity
was not known. In seals 1 and 2, the FA with the largest pro-
portion of total recovered radioactivity was 18:1 (37.8% and
43.1%, respectively; Fig. 4). Seal 2 had a larger proportion of
its total radioactivity remaining in 22:1 (23.0% vs. 12.6%) ac-
companied by a smaller proportion of its total radioactivity in
the various SFAs (19.3% vs. 32.6%).
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Figure 2. Percent of total recovered 3H radioactivity found in each fatty acid isolated from liver and adipose tissue (AT) depots of adult male
mink fed 1 mCi 3H-labeled 22:1n-11 and sampled after a 6-h incubation period.

Figure 3. Percent of total recovered 3H radioactivity found in each fatty acid isolated from liver and adipose tissue (AT) depots of adult male
mink fed 1 mCi 3H-labeled 22:1n-11 and sampled after a 9-h incubation period.

To assess the extent to which mink were useful animal models
for the investigation of the metabolism of marine lipids by a
pinniped, we compared the distribution of 3H radioactivity
among the FAs in the subcutaneous adipose depot of mink and
the blubber of seals (Fig. 5). The small sample size and variation
within each of the treatment groups prevented firm conclu-
sions; however, the proportion of radioactivity recovered from
each FA in the seals was quite similar to the proportions found
in the 6- and 9-h mink.

Discussion

The 22:1 FAs are generally underrepresented in adipose tissue
relative to the diet (Holland et al. 1990; Lin and Connor 1990;
Lin et al. 1993; Kirsch et al. 1998, 2000; Cooper et al. 2001;
Iverson et al. 2004). It has been suggested that the lower levels
of 22:1 in depot triacylglycerol (TAG) are a result of poor

digestibility and lower esterification rates of the 22:1 FAs
(Thomasson 1956; Caselli et al. 1979). The most important
factor governing the observed levels of these FAs in depot TAG,
however, is more likely the peroxisomal chain shortening of
22:1 FAs (Bremer and Norum 1982). Animals that are unac-
customed to consuming large amounts of 22:1 FAs have a
limited capacity for their metabolism, ultimately resulting in
an intracellular cardiac lipidosis which causes a deterioration
of myocardial function (see Bremer and Norum 1982 for a
review). This cardiac lipidosis is, however, temporary because
peroxisomal b-oxidation is induced by the intake of 22:1 FA–
containing diets (Christiansen et al. 1979a, 1979b; Thomassen
et al. 1979, 1985; Neat et al. 1980, 1981). As might be expected,
animals accustomed to diets high in 22:1 FAs are more able to
chain-shorten these FAs, thus avoiding any potentially harmful
cardiac lipidosis and perhaps leading to an even greater un-
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Table 2: 3H radioactivity recovered in fatty
acids isolated from blubber samples

Fatty Acid

3H dpm g�1 Blubber

Seal 1 Seal 2

14:0 7.7 3.8
16:0 3.2 2.0
18:0 11.0 1.2
16:1 6.4 2.2
18:1 30.0 31.0
20:1 6.1 2.8
22:1 8.8 9.0

Total 73.2 52.0

Note. Values are blubber.�11,000 # dpm g

Figure 4. Percent of total recovered 3H radioactivity found in each fatty acid isolated from the blubber of gray seals fed 1.5 mCi 3H-labeled
22:1n-11 and sampled after a 24-h incubation period.

derrepresentation of these FAs in adipose depots, relative to the
diet. For example, Rouvinen and Kiiskinen (1989) showed that
mink, whose wild diet is predominantly fish based (Linscombe
et al. 1982; Tolonen 1982), accumulated 22:1 FAs to a lesser
degree than did blue foxes (Alopex lagopus), which consume
fish only occasionally (Samuel and Nelson 1982), when both
species were fed diets high in 22:1 FAs.

The mink and seals studied here exhibited a strong capacity
for the metabolism of 22:1n-11, as evidenced by the consistently
lower recovery of 3H-labeled 22:1n-11 relative to 14C-labeled
18:1n-9. However, a caveat regarding the form in which the
two FAs were administered must be made. The 3H-labeled 22:
1n-11 was fed as a FAME, whereas the 14C-labeled 18:1n-9 was
fed as a free FA. TAG is the form in which FAs are naturally
consumed. Although there is some controversy in the literature
(Nørdoy et al. 1991; Krokan et al. 1993), it appears that FAs
consumed as TAG are more biologically available than those
consumed as alkyl esters (Ikeda et al. 1995; Hong et al. 2003).

In addition, free FAs are more slowly but ultimately equally
well absorbed as FAs from TAG (Ikeda et al. 1995). This implies
that the 14C-labeled 18:1n-9 may have been more readily ab-
sorbed and, therefore, more biologically available for incor-
poration into tissue lipids than was the 3H-labeled 22:1n-11. If
so, the values calculated for the relative recovery of 3H-labeled
22:1n-11 versus 14C-labeled 18:1n-9 may be due in part to lower
availability in addition to peroxisomal b-oxidation of the 3H-
labeled 22:1n-11.

In the 6-h mink, both the relative recovery of 3H-labeled 22:
1 and the distribution pattern of 3H radioactivity across the
various FAs indicate that there is considerable individual var-
iation in the ability to metabolize 22:1n-11. For example, mink
3 appeared to have a much higher capacity than either mink
1 or mink 2 (Figs. 1, 2). This variation may be due to differences
in the activity of their peroxisomal b-oxidation systems. It could
also be caused by differences in food passage rate among the
mink. The average food passage rate in mink is approximately
2–5 h (Jørgensen 1985; Szymeczko and Skrede 1990; Atkinson
1996). After only a 6-h incubation period, each mink could
have been at a different point in the processing of the meal.
Consistent with this interpretation, there was less individual
variation in the same data from the 9-h mink. After a 9-h
incubation period, the recovery of 3H-labeled 22:1n-11 relative
to 14C-labeled 18:1n-9 is lower in all mink tissues studied, and
there is very little difference in the relative recovery of 3H-
labeled 22:1n-11 across depots (Fig. 1). There is also a generally
lower concentration of 3H radioactivity in all tissues at the later
sampling period (Table 1). The uniformity of the relative re-
covery data and the lower 3H concentrations and relative re-
coveries at 9 h suggest that the extra time provided by the 9-
h incubation period allowed the mink to more fully metabolize
the 3H-labeled 22:1n-11.

We anticipated the presence of 3H in the chain-shortened
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Figure 5. Percent of total recovered 3H radioactivity found in each fatty acid isolated from the subcutaneous adipose tissue of adult male mink
fed 1 mCi 3H-labeled 22:1n-11 and sampled after a 6- or 9-h incubation period and the blubber of gray seals fed 1.5 mCi 3H-labeled 22:1n-
11 and sampled after a 24-h incubation period. Values are SD.averages � 1

products of 22:1, namely 20:1, 18:1, and 16:1, isolated from
adipose samples of animals fed 3H-labeled 22:1n-11 (Figs. 2–
4). In peroxisomal chain shortening, only one or a few b-
oxidation cycles take place (Osmundsen et al. 1979), making
20:1, 18:1, and 16:1 the expected products. Norseth and Chris-
tophersen (1978) found that the main product of the chain
shortening of 22:1n-9 was 18:1n-9, with some 20:1n-9 and 16:
1n-9 also being formed. Our results with 22:1n-11 are similar
in that the proportion of total radioactivity found in 18:1 of
all mink adipose depots, as well as seal blubber, was generally
more than twice that found in either 16:1 or 20:1 (Figs. 2–4).

The extent of 3H radioactivity found in the SFAs was some-
what surprising (Figs. 2–4). Radioactivity can appear in these
FAs if the chain-shortened products of peroxisomal b-oxidation
are transported to the mitochondria for complete breakdown
and the resultant acetyl groups are then utilized in de novo FA
synthesis. The main product of de novo FA synthesis is 16:0
(Volpe and Vagelos 1973), but some 14:0 and 12:0 may also
be formed, as well as traces of 18:0 (Wakil et al. 1983). The
presence of the vast majority of the 3H radioactivity of the liver
in SFA is consistent with this process of recycling the 3H-labeled
acetyl units into de novo synthesized SFA being important in
this organ. Whether the 3H-labeled SFAs present in the adipose
depots originated in the depots themselves or were transported
there from the liver is not known.

In both the visceral and subcutaneous adipose depots, the
proportion of total radioactivity present in 18:1 was greater in
the 9-h mink than it was in the 6-h mink (Figs. 2, 3). The
small sample sizes and the cross-sectional nature of the data
prevent firm conclusions, but we suggest that some of the de
novo synthesized SFAs may have been elongated and/or de-
saturated to form 18:1 FAs. Isomers of individual FAs cannot
be isolated using reverse-phase HPLC, so we cannot assess the

contribution of the different isomers to the total 3H radioac-
tivity associated with individual FAs at the two sampling times.
The larger proportion of 3H radioactivity associated with 18:1
at 9 h may simply be due to an increased amount of 3H-labeled
18:1n-11 from continued chain shortening of the ingested 3H-
labeled 22:1n-11. If, however, it is caused by an increased con-
tribution from the 18:1n-7 or 18:1n-9 isomers, this would fur-
ther indicate a progression in the metabolism of the ingested
radioactivity at this time.

Pinnipeds accustomed to consuming diets high in 22:1 FAs
are expected to have efficient peroxisomal chain-shortening
systems. This expectation is supported by Iverson et al. (2004),
who showed that the concentration of 22:1n-11 in the blubber
of gray and harp seals is much lower than its concentration in
the diet (proportional recoveries of 0.20 and 0.34, respectively).
We also found a reduced recovery of 3H-labeled 22:1n-11, in
this case relative to 14C-labeled 18:1n-9, in the two seals studied
here (0.66 and 0.84). The reduced deposition of 22:1n-11 cal-
culated by Iverson et al. (2004) is measured in relation to all
other FAs present in the diet and blubber, including those that
can be synthesized de novo in the seal. This ratio reflects total
FA metabolism in the animal, and therefore, the ratio is lower
than can be accounted for by the direct metabolism of 22:1n-
11. Because our calculation of the recovery of 22:1n-11 is rel-
ative to only a single FA, 18:1n-9, our measure of reduced
recovery more directly reflects the role of peroxisomal b-
oxidation in determining the relationship between dietary and
blubber levels of 22:1n-11. Because the two FAs were fed in
different forms (free FA vs. FAME), however, our measure of
relative recovery is still not an ideal reflection of peroxisomal
b-oxidation in these animals. Future work should aim to syn-
thesize and administer labeled TAG for each FA studied. In
addition, while our sample size has allowed us to only begin
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to characterize metabolic patterns, it will be important to in-
clude a greater sample size to examine individual variability in
relation to factors such as body size and metabolic rate.

In the past, mink have been used as models for nonruminant
animals in general (Urlings et al. 1993) and carnivores specif-
ically (Tauson et al. 1994). Because they are naturally carniv-
orous aquatic animals, mink seem to be reasonable models for
studying marine mammals (Donnelly et al. 2000). Insofar as
both mink and seals metabolized the tritium ingested as 22:
1n-11 into chain-shortened MUFAs and de novo synthesized
SFAs, the distribution patterns of 3H radioactivity across the
FAs isolated from seal blubber and mink subcutaneous adipose
tissue were comparable (Fig. 5). Thus, our results indicate that
mink are a suitable model to investigate the metabolism of
marine lipids by a carnivore accustomed to their consumption.
Mink have faster rates of passage of ingesta (2–5 h; Jørgensen
1985; Szymeczko and Skrede 1990; Atkinson 1996) relative to
seals (5–13 h; Helm 1984; Krockenberger and Bryden 1994),
as well as higher mass-specific metabolic rates (Kleiber 1975),
as a result of their smaller body size. This may explain the
apparently greater progression of the metabolism of 22:1n-11
in the mink compared with the seals (particularly at the 9-h
sampling time), but the 24-h incubation period used in the
seal experiments appears to be roughly equivalent to the shorter
incubation periods used in the mink experiments. Therefore,
given their smaller body size and demonstrated suitability as a
model, the use of mink will allow more comprehensive studies
to be conducted than would be possible using marine
mammals.
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