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Abstract Determining whether the diet of predators has changed is an important eco-
logical problem and appropriate methodology is needed in order to test for differences
or changes in diet. It is known that the fatty acid (FA) signature in a predator’s adi-
pose tissue predictably reflects the prey consumed and that, consequently, a change
in the FA signatures can be largely attributed to changes in the predator’s diet com-
position. The use of FA signatures as a means of detecting change in diet presents
some statistical challenges however, since the FA signatures are compositional and
sample sizes relative to the dimension of a signature are often small due to biological
constraints. Furthermore, the FA signatures often contain zeros precluding the direct
use of traditional compositional data analysis methods. In this paper, we provide the
methodology to carry out valid statistical tests for detecting changes in FA signatures
and we illustrate both independent and paired cases using simulation studies and real
life seabird and seal data. We conclude that the statistical challenges using FA data are
overcome through the use of nonparametric tests applied to the multivariate setting
with suitable test statistics capable of handling the zeros that are present in the data.
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1 Introduction

Understanding predator diets and factors influencing what is consumed are central
issues in understanding food web structure, the dynamics of predator—prey interac-
tions, and impacts or roles of predation in ecosystems. Likewise, determining whether
the diet of predators has changed is an important ecological problem and one that
requires appropriate methodology to test for differences or changes in diets. For
instance, it may be of interest to test for differences in diets of predator populations
from one region to the next, between demographic groups, or over time perhaps in
response to an environmental change. Relatively recent developments in biochemical
methods, such as tissue fatty acids (FAs) and stable isotopes, provide valuable means
to investigate diets of free-ranging animals (e.g., Budge et al. 2006; Iverson 2009;
Karnovsky et al. 2012). FAs measured in the fat storage sites of predators are particu-
larly sensitive to diet and can be used to study diets and trophic relationships in several
ways, but the most common approach is using FAs qualitatively or semi-quantitatively
to examine differences among predators in levels of specific FAs or in complete arrays
of FAs (Iverson 1993). Since the FA signature of the predator is determined largely
by its diet, a change in the FA signature can most often be attributed to changes in
its diet composition. However, the means by which differences have been detected
or assessed has varied substantially throughout the literature, and in some cases the
biological relevance of an alleged change may be questionable. In this paper, we pro-
vide the methodology to carry out valid statistical tests for detecting changes in FA
signatures, a problem that was motivated by the measurement of real-life predator FA
signatures.

Fatty acids (FAs) are the main constituent of most lipids and, for most predators,
the FAs of the prey are deposited in the adipose tissue of the predator with little
modification (reviewed in Iverson 2009). The result is that the FA signature or profile
(the distribution of all FAs) in the predator’s adipose tissue reflects the prey consumed
and a change in the FA signatures can most often be attributed to changes in diet
composition. We note that since its introduction in Iverson et al. (2004), quantitative
FA signature analysis (QFASA) has become an important method for quantitatively
estimating diets of predators based on the FA profiles of their prey (e.g., Iverson
et al. 2004, 2006, 2007). However, QFASA requires collection and analysis of an
extensive prey database in addition to several other significant requirements, which
may be onerous to meet, prior to being able to use the predator FAs alone to test
for changes or differences in diet. Hence, here we focus solely on the latter, more
qualitative and more common, use of FAs in diet studies. Since the components of
the FA profile are proportions that sum to one, the data are termed compositional.
While there are fairly standard statistical methods for handling compositional data
(see Aitchison 1986; Pawlowsky-Glahn and Buccianti 2011), the use of FA profiles
creates some specific difficulties. The main challenge is that of sample size relative to
the dimension of a profile. Approximately 70 FAs are routinely quantified in marine and
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even terrestrial predators and their prey. Thus, due to sampling constraints, often the
sample size is much less than the dimension of the data, precluding the use of standard
multivariate techniques. Our procedures here are based on the ideas of permutation
and randomization tests following the ideas of Davison and Hinkley (1997) but applied
to a multivariate setting. We focus on developing testing methods that do not require
the sample size to be larger than the dimension of the signatures.

Another issue that arises when dealing with FA signatures is the presence of zeros.
In general, zeros in compositional data are problematic since the techniques rec-
ommended in Aitchison (1986) involve transformations using logarithms. Martin-
Fernandez et al. (2011) distinguish between the types of zeros and refer to rounded
zeros as either small values that have been rounded to zero, or as proportions that
fall below detection limit and are consequently recorded as zero. Rounded zeros are
generally less difficult to handle than essential zeros, defined as the “absolute absence
of the part in the observation ”” (Martin-Fernandez et al. 2003). Zeros in the FA signa-
tures may result from some FAs being present in such small amounts that they are not
detected by the measuring device, or they may truly be zero. The proper treatment of
the zeros depends on their type which is, unfortunately, generally unknown in practice.
Hence we consider two different methods of dealing with them. The first approach
treats the zeros as below-detection values and involves replacing the zeros by a small
value and then using a test statistic based on Aitchison’s methods. We have chosen to
use the multiplicative replacement strategy discussed in Martin-Fernandez et al. (2003)
and in Martin-Fernandez and Thio-Henestrosa (2006) while more recent approaches
are discussed in Palarea-Albaladejo and Martin-Fernandez (2007), Palarea-Albaladejo
and Martin-Fernandez (2008), Martin-Fernandez et al. (2011) and Palarea-Albaladejo
and Martin-Fernandez (2013).

Replacement strategies are not recommended for handling essential zeros. We have
thus chosen to examine an alternative method which is well-suited for essential zeros in
the FA signatures. This second approach involves designing a test statistic that allows
for components to be truly zero, but which adheres, at least from a practical perspective,
to fundamental compositional data analysis principles such as scale invariance and
subcompositional coherence. This approach has the advantage that it could be applied
to the problem of testing for a difference in diet using the QFASA diet estimates (not
considered here) since the diet estimates typically contain many essential zeros. Note
that treatment of essential zeros associated with estimating the diet of predators using
FA signatures is discussed in Stewart and Field (2011) and in Stewart (2013).

2 Methods

We begin with the case of comparing independent FA signatures followed by com-
paring paired FA signatures. The cases are considered separately since the testing
procedures differ. The performance of the testing procedures is assessed through sim-
ulation studies using simulated predators called pseudo-predators. Pseudo-predators
were first introduced in Iverson et al. (2004) to assess QFASA performance. Our mod-
ified algorithm for generating pseudo-predators along with the data set that we will
use to create them is also discussed in more detail in Sect. 3.
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2.1 Independent Samples of Predators

Suppose we have two independent samples of predator FA signatures, say yy;,i =
I,...,nrandyy;,i =1, ..., no,each of dimension m. In the absence of knowing the
true species proportions in the diet of the two populations, we test for a difference in
the location of the FA signatures and make the assumption that this is equivalent to
testing that the diets are the same, which is ultimately of interest. While the diet of
the predators varies across seasons and regions, changes in the diet will be reflected in
the FA signatures. However, the prey FA signatures consumed by the predators also
vary over time and space, and differences in the FA signatures do not always translate
directly to differences in the diet. This potential limitation of working at the FA level,
is discussed further in Sect. 5.

To determine whether there is a difference in the FA signatures, we require a test
statistic that measures the distance between the data and the null hypothesis of no
difference in the location of the FA signatures. Note that in terms of variability in the
FA signatures, for our practical examples (for instance, the real-life data in Sect. 4)
the dispersion is generally similar for both samples. However, unequal dispersion is
not as critical in the nonparametric setting.

We are mainly interested in the more difficult case in which n; and n, are small
relative to m since otherwise standard multivariate techniques suitable for composi-
tional data may be used. Aitchison (1986) describes such methods in detail. Essentially
the methods involve transforming the data and then proceeding as if the transformed
data are multivariate normal. These methods require sample sizes to be larger than m
and that no zeros be present, though rounded zeros could be modified as previously
discussed.

For our procedures the sample sizes n; and ny need not be larger than m. Our
testing method is based on the nonparametric permutation test for the comparison of
two means discussed in Davison and Hinkley (1997). With their approach, a P value
is computed by pooling the n; and n, observations and considering permutations
of the concatenation of the two random samples. For each permutation, the first n
components of the concatenated vector give the first sample and the remaining n,
observations the second sample. An appropriate test statistic is calculated for R such
permutations. The P value is computed by comparing the R test statistics to the
observed test statistic.

It is straightforward to extend the algorithm to the multivariate case and all that
is required is a suitable test statistic that measures the “distance” between the two
compositional samples. We consider two measures of distance but, in both cases, the

overall test statistic is
ny n2

T = Z 2 dist (y1i,. ¥2i,) (D

i1=1lix=1

where “dist” denotes one of these two measures.

Aitchison (1992) argues that a measure of distance between two compositional vec-
tors must satisfy various intuitive criteria including the principles of scale invariance
and subcompositional coherence. While scale invariance ensures that the ratio of parts
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is preserved, subcompositional coherence is described in Bacon-Shone (2011) as the
principle that inferences about subcompositions should remain the same, regardless
of whether or not the inference is carried out on the full composition or a subcom-
position. In dealing with distance measures, for instance, we require that the distance
between two full compositions be no less than the distance between two corresponding
subcompositions. Aitchison’s distance satisfies both of these principles and is defined
as follows:

1/2

m

2
AIT (y1i,, y2i,) = Z {log [yiij/g (y1i1)] — log [v2i2j /8 (¥2ir)] } 2
=1

where g(y) = (y1 -+ ym)% represents the geometric mean (Bacon-Shone 2011).

Since this test statistic involves the logarithmic function, in order to apply this test,
the rounded zeros in the FA signatures need first be modified using a replacement
strategy and the details of this may be found in Sect. 4.

When essential zeros are present, finding a test statistic that allows for them (without
having to alter the zeros) and satisfies the principles of scale invariance and subcom-
positional coherence is not a trivial task, in part because the principles implicitly
require that ratios of components be considered where one component (possibly the
denominator) could be zero. Our second test statistic does not require that the zeros
be modified and its development was the result of the ideas presented in Greenacre
(2011a,b). Greenacre (2011b) proposed measuring subcompositional incoherence by
examining how similar distances between components in the full composition were to
distances between the corresponding components in subcompositions. He remarked
that a method may be, for practical purposes, close enough to being subcomposition-
ally coherent that the advantages of the method, particularly if it solves the problem
of zeros for example, may outweigh slight incoherence. Here we consider our pro-
posed distance measure to be coherent if distances between full compositions are as
least as large as the distances between corresponding subcompositions (Egozcue and
Pawlowsky-Glahn 2011).

According to Greenacre (2011a), the chi-square distance used in correspondence
analysis between two rows in a matrix of compositional data has the property that if
the data are power transformed (i.e. YV, for a matrix Y of FA signatures) and then
re-closed, it will converge to the AIT distance in Eq. 2 as the power, y, tends to
zero and provided certain scaling factors are used. This latter result essentially stems
from the Box—Cox transformation (see Greenacre 2010). We have used these facts
and constructed a test statistic (or, equivalently, a distance measure) based on the chi-
square distance measure which we have found empirically to converge to the AIT
distance measure when the data are power transformed (and re-closed) as the power
tends to zero. Our distance measure can therefore be made to become arbitrarily
close to the AIT distance measure which is known to satisfy the scale invariance and
subcompositional coherence principles.

We define our chi-square distance based measure between two FA signatures yy;,
and y;, as follows:
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1/2

<A (Zlilj _ZZizj)z
CS (Y. Y2ir) = 1/y~2m ZC— . 3)
j=1 nnyj

where z| and z, are the power transformed data, reclosed, and

i) = < 1 if 2ij = 22ij = 0
21iyj + 22i,j otherwise.
Note that the distance measure in Eq. 3 can handle essential zeros in the FA signatures
and that if both zy;, ; and z;,; are zero, the corresponding component in the sum is
also zero.

The power transformation, y, where 0 < y < 1, is chosen so that our distance
measure is practically subcompositionally coherent. More specifically, to determine
y we consider a sequence of y values starting with y = 1,y = 1/2,y = 1/3, etc.
The data are power transformed by y and re-closed, and all possible pairwise dis-
tances are computed from the full (transformed) compositions. In a different context,
Greenacre (2011b) found that two-part subcompositions appear to be the most sen-
sitive to subcompositional incoherence. Therefore for each two-part subcomposition,
pairwise distances are similarly computed. As an alternative, we compute the propor-
tion of times that the distance between the full compositions is greater than or equal to
the corresponding two-part subcomposition and our measure of incoherence for that
two-part subcomposition is one minus this value. Since this measure is computed for
each two-part subcomposition, we use an average value over all possible two-part sub-
compositions. This procedure is repeated with decreasing y values until the measure
is close to zero (we used <1 x 10~ in our simulations). Our chosen y is then fixed in
Eq. 3. Note that for our purposes it is not known which size subcomposition is most
sensitive and we therefore need to make the assumption that for our choice of power
transformation, the stress would be close to zero regardless of the subcomposition size
used to determine y. If y is small, this should be a reasonable assumption since we
know that the CS distance converges to the AIT distance as y tends to 0.

The multivariate permutation test (MPT) is summarized below, where “dist” refers
to either AIT or CS defined in Eqs. 2 and 3, respectively.

Multivariate permutation test (MPT)

ny nz

1. Compute the test statistic, 7 = Zil:l i1 dISt(Y 1y, ¥2is)-
2. forr=1,..., R
(a) Pool the two samples.

(b) Permute the n| + ny observations to obtain: yf’, i=1,...,n1+no.

(© Letyii =y/,i=1,...,njandy} =y i=n+1,...,n +ny.
. . n n .

(d) Compute the test statistic, 7% = > 70| 37| dist(y} , ¥3;,)-

3. Compute the P value

wer _ HT* =T}
A R
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The multivariate permutation test was assessed through simulations by examining
(1) the probability of concluding that the diets differ when they do not (the probability
of committing a type I error) and (2) the probability of concluding that the diets differ
when they do (the power of the test).

2.2 Paired samples of predators

We now consider the analysis of paired samples of FA signatures, where a predator is
sampled at two different time points, say yp; and y4;,i = 1, ..., n. Our method tests
for a change in the location of the FA signatures and is intended for the more challeng-
ing, but often realistic, setting in which n < m. Recall that when the sample sizes are
small, standard multivariate techniques, including those discussed in Aitchison and
Ng (2003) for paired compositional data, are not useful.

For this case, we apply an extension to the univariate matched-pair randomization P
value discussed in Problem 7 (p. 186) of Davison and Hinkley (1997). Their univariate
method involves re-sampling under the null hypothesis of no difference by computing
dl.* = s;d;, i = 1,...,n where d; are the computed differences in the original data
set and s; are independent and equally likely to be +1 and —1. We use the * notation
to denote the samples from this null resampling model. For each generated sample,
a suitable test statistic is computed. In the multivariate setting, we have chosen to
compute d;" = s;d;, where d; is a vector containing the m differences between the ith
before and after FA signature.

As in the independent case, we compute the differences using two different
approaches. While both take into account the compositional nature of the data, the
second method treats the zeros as essential zeros and does not require the use of a
replacement method to deal with them. In both cases, our test statistic can be written
as

" 1/2
72
r=2d @
j=1
where d i =1/n Z?:l dij, j = 1,...,m and d;; denotes the difference, computed

using one of the two methods discussed below, between the jth FA for the ith indi-
vidual.

Our first approach treats the zeros in the FA signatures as rounded zeros and involves
modifying the zeros, log-ratio transforming the data and then computing relative differ-
ences using methods in Aitchison (1986) and Aitchison and Ng (2003). More specif-
ically, let yp_,, denote a “before” FA signature without the last FA component and

similarly for the “after” FA signature. For i = 1, ..., n we then compute the differ-
ences 1 | |
og _  log og
4" =z, —zg ®)
where

zlg;‘; =log (—yBim) and zfig = log (—yAim )
YBim YAim
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Note that we could have opted to use an alternative transformation such as the centered
log-ratio transformation (on which Aitchison’s distance is based) or the isometric log-
ratio transformation (see Egozcue and Pawlowsky-Glahn 2011).

Our alternative method of computing differences is based on Eq. 3 and the differ-
ences are calculated as follows:

dSS = 1/y/2mC 12 (z;?? - z%?) 6)

where ng and z(és are the re-closed power transformed data and C is a m x m diagonal
matrix with diagonal elements ¢;; = za;; + zBij, provided one of z4;; and zp;; are
non zero. If both are zero, ¢;; is set to 1 so that, in this case, dss =0

The choice of y is determined using an algorithm similar to that used in the inde-

1/2
2

pendent case where the distances CS(y i, ypi) = (Z'/'.Ll (dijs) ) ,i=1,...,n
are compared to the distance between the corresponding two-part subcompositions,
when the data are power transformed.

Our multivariate randomization P value is computed using the algorithm below,

. !
where d; can be either diog or dl.CS.

Multivariate randomization test (MRT)

1. Compute the differences d;, i =1, ..., n.
2. Compute the test statistic

1/2

m
T = Z&f
j=1

using differences in 1.
3. forr=1,...,R
(a) For the ith observation, randomly select +1 or —1 and call this sir *io=
1,...,n.
(b) Compute d}” = s*d;,i =1,...,n.

_\2TV2
(c) Compute T = [ZT:] (d;'.") ] )
4. Compute the P value

mrr _ HT™ =T}
P =

3 Simulation study

We carried out simulations to assess the performance of the MPT and MRT in terms
of the probability of committing a type I error and power when we are ultimately
interested in determining whether the diets differ.
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We used simulated predators to evaluate our methods. These simulated predators
were also used in Iverson et al. (2004) to assess the methods of QFASA. To create a
pseudo-predator, we require a prey database containing samples of prey FA signatures
from each species of prey that could potentially be a part of the predator’s diet. The
prey database that we use to generate the pseudo-predators was collected along the
Scotian Shelf off eastern Canada (see Budge et al. 2002). This prey database contains
28 species and 2110 FA signatures (specimens) in total. Refer to Online Resource 1
for these species and their sample sizes.

Not all of the FAs contribute equal information about diet and we have chosen to
use a subset of 40 FAs from the 65 FAs in the full prey base. These 40 FAs include FAs
that arise only from diet as well as those that arise from both diet and biosynthesis.
This particular subset of FAs, along with any of the data sets used in this paper, are
available from the authors.

We then formed a pseudo-predator by choosing a true diet and sampling propor-
tionately from the prey database with replacement from the species in the diet. For
example, if the true proportion of Cod in the diet was 0.5 and the total number of
prey FA signatures used in the simulations was 50, then we would sample 25 Cod
signatures with replacement. To account for the predator eating small amounts of
prey not considered to be part of the diet, noise is added to the pseudo-predator by
sampling from species not in the specified diet. Our simulations actually make use of
the updated pseudo-predator generating algorithm found in Stewart and Field (2011)
which incorporates fat content of the prey. Prey with a higher fat content contribute a
larger proportion to the FA signature of the predator than those with a lower fat content
and these pseudo-predators are designed to take into account this additional variable.
Generated samples of pseudo-predators then constitute our samples of compositional
data.

We examined two sets of diets in our simulation studies consisting of species of
fish that seals on the east coast of Canada (especially grey seals, Halichoerus grypus)
are known to eat. For simulations based on the first set of diets (Table 1), we used Diet
1 throughout as the diet of the first sample of seals (in the independent case) or as the
“before” seals (in the paired case). To compute P[Type I Error], Diet 1 was also used
as the diet of the second sample of seals (or the “after” sample in the paired case). To
illustrate the power of our tests, we chose the second sample of seals to have one of
diets two to five, where each of these diets gradually gets “farther” from Diet 1 in terms
of distance. In Bowen and Harrison (2007), seasonal and interannual variability in the
diet of grey seals near Sable Island was studied through faecal samples. The second set
of diets (Table 2) used in our simulations studies reflect four of these estimated diets.
Note that while Bowen and Harrison (2007) obtained estimates of diet for years 1991—
1998 and for the winter, spring and fall seasons, it was not practical to study the power
between all combinations of diets since obtaining results is highly computationally
intensive. Instead, we computed the power for diets with the smallest within season
relative distance and similarly for within years. In particular, the distance between the
fall 1992 and fall 1995 diets was the smallest using the CS distance with y = 1/3 when
compared to all other within season comparisons and the distance between winter 1995
and spring 1995 was the smallest for all within year comparisons. Power calculations
were then computed for these pairs diets. Note that we chose to use y = 1/3 for effect
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Table 1 Diets used in simulations for assessing the power of the multivariate permutation and randomiza-
tion tests

Species Diet 1 Diet 2 Diet 3 Diet 4 Diet 5
Northern Sandlance 35 38 42 45 50
Redfish 0 0 0 0

Capelin

Atlantic Cod 30 27 24 20 15
Silver Hake 15 12 10 10

American Plaice 0 0 0 0

Yellowtail Flounder 10 13 14 15 20
Longhorn Sculpin 0 0 0 0 0
Other 10 10 10 10 10
Total 100 100 100 100 100

Table 2 Estimated diets of grey seals near Sable Island in fall 1992, fall 1995, winter 1995 and spring
1995 used in simulations for assessing power of the multivariate permutation and randomization tests

Species Fall 1992 Fall 1995 Winter 1995 Spring 1995
Northern Sandlance 67 60 40 25
Redfish 0 0 0

Capelin 0 0 0

Atlantic Cod 18 17 13 29
Silver Hake 6 10 3 7
American Plaice 3 5 15 11
Yellowtail Flounder 5 16 12
Longhorn Sculpin 0 9 4
Other 1 4 5
Total 100 100 100 100

size/distance calculations between true diets because this value lay within the values
typically observed in the data.

For both the independent and paired cases, we chose ¢ = 0.01, 0.05 and 0.1 and
examined two sample sizes, namely n1 = ny = 10,25 (or simply n = 10,25 in
the paired setting) since results become computationally intensive to obtain as the
sample size increases. Furthermore, standard multivariate techniques can be applied
when n1 and n, are large. We set M = 500 for samples sizes of 10 but, for the
independent case only, used a reduced number of simulations of only M = 200 for
sample sizes of 25 because results took much longer to obtain for this case and at
this sample size. Note that this difference in number of replicates means, for example,
that if the power is 0.75, the standard error of our estimate of power is approximately
4/0.75 x 0.25/200 = 0.031 when M = 200 but only 0.019 when M = 500.

While details of our simulation algorithms are provided in Online Resource 2, note
that the n; and n, pseudo-predators are both sampled from the same prey database
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Table 3 Type I error simulation results associated with the MPT and MRT for three significance levels
and sample size n = 10, computed using two different test statistics

Test Test statistic o =0.01 o = 0.05 a=0.1

MPT CS 0.012 0.052 0.110
AIT 0.014 0.042 0.088

MRT CS 0.008 0.052 0.090
LOG 0.014 0.062 0.114

and may have some prey signatures in common. Consequently, the samples may not
be entirely independent and in practice the P[Type I Error] could be slightly larger
than what is presented in our results section. Also, when the data are paired we need
to be able to simulate paired samples of pseudo-predators. While there may be various
ways of accomplishing this, we have chosen to adjust our “after” predators as follows:
let

yai=(—=2Xya+Arys,

where yp and y 4 are the “before” and “after” pseudo-predators and y? is our adjusted
“after” predator. In our simulations, we set A equal to 0.5.

The MPT and MRT type I error simulation results for sample sizes of 10 are
displayed in Table 3 while the power results for this sample size are demonstrated
graphically in Figs. 1 and 2. Results for sample sizes of 25 are given in Online Resource
3 since conclusions were, in essence, the same for this sample size. We use the notation
AIT to denote the test statistic based on Aitchison’s distance (Eq. 2), CS to denote the
test statistics based on Eqgs. 3 and 6, and LOG for the test statistic based on Eq. 5.

In terms of type I error, the MPT and MRT with either test statistic appear to perform
well as the targeted significance levels (0.01, 0.05 or 0.1) are within plus or minus two
standard deviations our estimate of the probability of type 1 error. Figure 1 displays
the approximate probability of concluding that two diets differ when, in fact, they
do for the MPT at sample sizes of 10 and for various combinations of diet where, for
example, D1/D3 denotes the power when Diet 1 and Diet 3 from Table 1 are considered
to be the two true underlying diets. (F92, F95, W95, and S95 denote the fall 92, fall
95, winter 95 and spring 95 diets respectively given in Table 2). Figure 2 similarly
illustrates the power for the MRT when n = 10. The effect size (or distance between
the two diets) is computed using Eq. 3 with y = 1/3.

Perhaps the most noticeable feature of the graphs is the drop in power when the
fall 92 and fall 95 diets are used even though the CS distance between them (with
y = 1/3) is approximately the same as the distance between Diets 1 and 5. With the
exception of this drop, the power results suggest overall that the MPT and MRT are
reasonably powerful even at small sample sizes, with power increasing with effect size
and sample size as expected. One reason for the apparent discrepancy in power for
the fall 92 and fall 95 diets could be related to the choice of y used in calculating the
effect size since effect size varies with y. In fact, using y = 1/10, the effect size for
these diets is in between the effect size for D1/D2 and D1/D3. The results also show
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Fig. 1 Power simulation results associated with the MPT for samples of size 10, computed using two
different test statistics. Effect size is the CS distance between the two diets (with y = 1/3) where, for
example, the distance between Diet 1 and Diet 2 is denoted as D1/D2. F92, F95, W95, and S95 denote the
fall 92, fall 95, winter 95 and spring 95 diets respectively

that while power is comparable for both test statistics, it is generally higher when the
CS distance is used and the difference is particularly noticeable for the MRT (Fig. 2).

4 Real-life data
4.1 Independent samples of seabird FA signatures

To illustrate the MPT procedure on real-life data, we examined captive seabird data
obtained from islands in the southeastern Bering Sea and used in Iverson et al. (2007)
to validate QFASA. The data consists of 20 Red-legged Kittiwake FA signatures and
26 Common Murre FA signatures. Both samples of seabirds were split evenly into
two groups. For the Kittiwake seabirds, from hatching until day 15, both groups were
fed herring and silverside and then from day 16 until day 42 the first group was fed
silverside only and the second group only smelt. On day 42 the FA signatures were
sampled, providing us with two independent samples of FA signatures on which we can
apply and assess our MPT. A similar experiment was carried out using the Common
Murre seabirds and the MPT was applied to this data set as well. Only 40 FAs of
the original 68 determined to be associated with diet were used in the analysis. As
discussed in more detail below, the seabird samples contain zeros which we first treat
as rounded zeros and, in which case, they need to be appropriately modified in order
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Fig. 2 Power simulation results associated with the MRT for samples of size 10, computed using two
different test statistics. Effect size is the CS distance between the two diets (with y = 1/3) where, for
example, the distance between Diet 1 and Diet 2 is denoted as D1/D2. F92, F95, W95, and S95 denote the
fall 92, fall 95, winter 95 and spring 95 diets respectively

to use the AIT test statistic. Following the recommendations in Martin-Fernandez and
Thio-Henestrosa (2006), we have used a multiplicative replacement strategy where
the modified FA signature, say R, is given by

5j ify.,' =0,

ri= . %)
j (1 S ST sk) y; ify; >0

and §; is a small value determined through a sensitivity analysis. We have chosen to
use the same value of §; for all FAs and will, from here on in, refer to this value as
simply 8. We compare the results with the CS based test statistic in which we assume
that the zeros are essential zeros and do not modify them.

Tables 4 and 5 provide the captive seabird diets along with the MPT P values for
each sample. For two FAs, all observations were zero in all four data sets and we chose
to remove these FAs prior the analysis. Without their removal, the % of zeros in three
of the data sets were slightly >10 %, the maximum percentage of zeros that should
occur when applying the multiplicative replacement strategy according to Martin-
Fernandez and Thio-Henestrosa (2006). (The removal of these FAs is not necessary
prior to using the CS test statistic, however, since we were interested in comparing
the results of both test statistics it seemed reasonable to use the same FAs in the
analysis). It is important to note that because the multiplicative replacement approach
replaces zeros by a fixed amount, as the percentage of zeros in the data increases,
so does the potential for issues such underestimation of the variability in the data. In
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Table 4 True diets and MPT P values (computed using two different test statistics) for two independent
samples of Red-legged Kittiwakes

Diet 1,n; = 10 Diet 2, no = 10 Test statistic P value
Day 0-15 Day 16-42 Day 0-15 Day 1642 CS <0.002
Herring/Silverside Silverside Herring/Silverside Smelt AIT <0.002

Table 5 True diets and MPT P values (computed using two different test statistics) for two independent
samples of Common Murres

Diet1,n; =13 Diet2,ny, =13 Test statistic P value
Day 0-15 Day 1642 Day 0-15 Day 1642 CS <0.002
Silverside Silverside Silverside Smelt AIT <0.002

general, more recent approaches such as those discussed in Palarea-Albaladejo and
Martin-Fernandez (2013) (including a replacement strategy based on the log-normal
distribution) hold better statistical properties when the percentage of zeros is large.
These methods, however, require parameter estimation and for small sample sizes such
as ours may perform poorly.

The CS test statistic was computed with y = 1/5 for the Red-legged Kittiwakes
and y = 1 for the Common Murres as these values were found to be optimal in terms
of minimizing subcompositional incoherence. For both types of seabirds, the CS based
P values were <0.002 (based on 500 permutations).

To obtain the AIT test statistic results, the remaining zeros (ranging from 1.2 to
12.1 % of the data) needed to be modified. In order to select § we carried out a brief
sensitivity analysis and attempted to determine a value such that results (i.e. P values)
became unstable. The smallest non zero value in all four data sets was about 0.0001
and we found, however, that for both types of seabirds the P value was <0.002 for all
3 values that we examined between 0.00001 and 0.0001. We therefore opted to simply
use § = 0.00005, or one half of the smallest non zero value. The corresponding P
value was <0.002 for both types of seabirds.

In all cases, the P values support the alternative hypothesis that the diets have
changed which is known to be the case for this experiment.

4.2 Paired samples of seal FA signatures

Paired data consisting of before and after seal FA signatures were collected by Margi
Cooper (Dalhousie University) for each of two separate experiments, one conducted
in the fall of 1999 and the other in the spring of 2000, and the FA signatures of seals
before and after a feeding experiment were recorded. For this experiment, of interest
is whether or not the FA signatures have changed to reflect the known change in the
diet and we may apply our MRT.

The data consists of 8 seals for the 1999 data set and 10 seals for the 2000 data
sets. The 40 FAs used in the seabird data were also extracted from the original 69
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Table 6 MRT P values

(computed using two different
test statistics) for two before and CcS AIT
after seal feeding experiments

n MRT P values

Fall 1999 8 0.006 0.01
Spring 2000 10 0.002 <0.002

paired FAs. Some zeros occurred in these data sets as well preventing the direct use
of Aitchison’s methods. Before applying Eq. 5, the zeros were modified using the
multiplicative replacement strategy given in Eq. 7.

Results of the before and after seal experiments are displayed in Table 6. For the
CS test statistic, the optimal values of y were determined to be 1/2 for the 1999 data
and 1 for the 2000 data.

The 1999 “after” data set contained the highest percentage of zeros at about 3.4 %.
The smallest non zero FA occurred in the “before” year 2000 data set and was approx-
imately 1.2 x 107°. Note that one FA was zero for all seals in the 1999 data sets but
not in the 2000 data sets. We did not remove this FA since, overall, the percentage of
zeros was still small. In order to choose § a sensitivity analysis was carried out with §
ranging from 1 x 1078 to 1 x 107>, For the 1999 data set, the corresponding P values
ranged from <0.002 to 0.024 and for the 2000 data set from <0.002 to 0.012. Using
8 = (1.2 x 107%) /2, we obtained the P values shown in Table 6.

For both data sets the P values are very small and we may conclude that the FA
signatures of the seals changed significantly during the feeding experiments.

5 Discussion

The use of FAs offers a promising approach to the study of food webs, predator—prey
interactions and overall ecosystem dynamics. A key feature of FAs is that, unlike
other dietary nutrients, they are generally not broken down during digestion and FAs
in the predator can resemble FA patterns in the prey consumed. We can therefore use
FAs to detect changes in or differences between the diets of predators. Although FA
signatures (the distribution of all FAs) are known to reflect changes in diet, using them
to test for a difference in diet is challenging from a statistical point of view. Managing
samples sizes that are much less than the dimension of the FA signature is a substantial
difficulty. We have successfully dealt with this issue through the use of nonparametric
procedures with test statistics carefully chosen to handle the compositional nature of
the data as well as zeros that may arise. We considered both the independent and paired
settings and the procedures were validated through a simulation study and real-life
examples. Results from the simulation study indicate that applying Aitchison’s method
in permutation/randomizations tests for differences in the location of the signatures
lead to reasonably powerful tests at relatively small sample sizes. This is also the case if
the CS distance measure is used. Furthermore, the CS distance measures appears to be
slightly more powerful but it is only needed when there are essential zeros in the data.
The real-life examples consisting of seabird and seal data also present support for the
practical usefulness of the developed statistical methodology for detecting changes
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in FA signatures. As compositional data arise in many applications, our methods
can be extended to other problematic applications involving small sample sizes and
potentially problematic zeros.

A practical limitation of our procedures is that the analysis is carried out at the
FA level and a significant difference in the FA signatures may not always relate to a
difference in the diets. For instance, if the FA signatures are found to be significantly
different, interpretation issues may arise if the prey themselves differ between the
two predator population samples. This can occur, for example, if sampling is done
at different times of the year and/or in different regions. Consider two populations
of seals eating only one species, say sandlance, from two different regions. If the FA
signatures of sandlance from the two regions are different then so will be the seal FA
signatures and we may correctly conclude that the seal FA signatures are different even
though the seals have the same diet. That is, both populations are eating sandlance. In
these cases, a difference in FA signatures does not necessarily imply a difference in
diet. However, provided the FA sampling is done in the same area and same season, a
change in FA signatures should indicate a change in diet composition.

Iverson et al. (2004) provide a method (called QFASA) of estimating the diet of a
predator based on the mean FA signature of the various prey species potentially in the
predator’s diet. While we could alternatively apply our procedures to diet estimates
obtained through QFASA, to more directly address the problem of testing for a dif-
ference in diet, there are significant additional challenges to overcome when working
at the diet estimate level. For QFASA, in addition to building a comprehensive and
reliable prey base which can sometimes represent an enormous undertaking, there are
also additional requirements such as the development of calibration factors needed
to account for the effects of predator metabolism on FA deposition in lipid stores.
Currently these coefficients are estimated through studies in which a predator is fed
a constant diet over a long term and any differences between the FAs in the predator
and the prey are then assumed to be attributed to metabolic processing. However,
such studies require carefully controlled long-term captive studies, and depending on
the predator, may be difficult to undertake. An estimate of the fat content of each
prey species is required as well in order to account for prey of differing lipid con-
tents (and thus relative FA contributions) and yet species variability in fat content
can be large. Thus, estimation procedures then need to account for the variability
due to the calibration factors and fat content. Further challenges include the selec-
tion of FA subset applied in QFASA and the issue of estimating the contribution of
prey species with similar FA signatures. A major statistical challenge when work-
ing at the diet estimate level is the proper management of the abundance of essential
zeros that typically occur, though our proposed distance measure would be helpful
here.

With the aforementioned challenges in mind, using FAs alone to determine whether
the diet has changed or whether diets differ clearly has great appeal and our proposed
tests are applicable to many real-life situations. Using the statistical procedures we out-
line here, it is possible to examine empirically determined differences among predators
in levels of specific FAs or in complete arrays of FAs, which can be used to indicate
differences in diet(s) among individuals, populations, and species.
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